
90 Chapter 5

Using HP SICL with GPIO

GPIO is a parallel interface that is flexible and allows a variety of custom
connections. Although GPIO typically requires more time to configure than
HP-IB, its speed and versatility make it the perfect choice for many tasks.

This chapter explains how to use SICL to communicate over GPIO. In order
to communicate over GPIO, you must have loaded the GPIO fileset during
the HP I/O Libraries installation. See the HP I/O Libraries Installation and
Configuration Guide for HP-UX for information. Also note that the GPIO
related SICL functions have the string GPIO embedded in their names.

This chapter describes in detail how to open a communications session and
communicate with an instrument over a GPIO connection. The example
programs shown in this chapter are also provided in the
/opt/sicl/share/examples directory on HP-UX 10, or the
/usr/pil/examples directory on HP-UX 9.

Note GPIO is not supported with SICL over LAN.

This chapter contains the following sections:

• Creating a Communications Session with GPIO
• Communicating with GPIO Interfaces
• Summary of GPIO Specific Functions

Chapter 5 91

Using HP SICL with GPIO
Creating a Communications Session with GPIO

Creating a Communications Session
with GPIO
Once you have configured your system for GPIO communications, you can
start programming with the SICL functions. If you have programmed GPIO
before, you will probably want to open the interface and start sending
commands.

With HP-IB and VXI, there can be multiple devices on a single interface.
These interfaces support a connection called a device session. With GPIO,
only one device is connected to the interface. Therefore, you communicate
with GPIO devices using an interface session.

92 Chapter 5

Using HP SICL with GPIO
Communicating with GPIO Interfaces

Communicating with GPIO Interfaces
Interface sessions are used for GPIO data transfer, interrupt, status, and
control operations. When communicating with a GPIO interface session,
you specify the interface name.

Addressing GPIO Interfaces

To create an interface session on GPIO, specify either the interface
symbolic name or logical unit in the addr parameter of the
iopen function. The interface symbolic name and logical unit
are defined during the system configuration. See the HP I/O Libraries
Installation and Configuration Guide for HP-UX for information on these
values.

 The following are example addresses for GPIO interface sessions:

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified
during the configuration. The name used in your SICL program must match
the logical unit or symbolic name specified in the system
configuration. Other possible interface names are parallel, GPIO, etc.

 The following example opens an interface session with the GPIO interface:

INST intf;
intf = iopen ("gpio");

gpio An interface symbolic name.

12 An interface logical unit.

Chapter 5 93

Using HP SICL with GPIO
Communicating with GPIO Interfaces

HP SICL Function Support with
GPIO Interface Sessions

The following describes how some SICL functions are implemented for
GPIO interface sessions.

iwrite,
iread

The size parameters for non-formatted I/O functions
are always byte counts, regardless of the current
data width of the interface.

iprintf,
iscanf

All formatted I/O functions work with GPIO. When
formatted I/O is used with 16-bit data widths, the
formatting buffers re-assemble the data as a stream
of bytes. On the Series 700, these bytes are
ordered: high-low-high-low... Because of this
"unpacking" operation, 16-bit data widths may not
be appropriate for formatted I/O operations. For
iscanf termination, an END value must be
specified using igpioctrl. See Chapter 10 for
details.

itermchr With 16-bit data widths, only the low (least-
significant) byte is used.

ixtrig Provides a method of triggering using either the
CTL0 or CTL1 control lines. This function pulses the
specified control line for approximately 1
microsecond. The following constants are defined:
I_TRIG_STD Pulse CTL0 line
I_TRIG_GPIO_CTL0 Pulse CTL0 line
I_TRIG_GPIO_CTL1 Pulse CTL1 line

itrigger Same as ixtrig (I_TRIG_STD). Pulses the
CTL0 control line.

iclear Pulses the P_RESET line for approximately 12
microseconds, aborts any pending writes, discards
any data in the receive buffer, and resets any error
conditions. Optionally clears the Data Out port,
depending upon the mode configuration specified
during the SICL configuration.

94 Chapter 5

Using HP SICL with GPIO
Communicating with GPIO Interfaces

GPIO Interface
Session

Interrupts

There are specific interface session interrupts that can be used. See
isetintr in Chapter 10 for information on the interface session interrupts
for GPIO.

ionsrq Installs a service request handler for this session.
The concept of service request (SRQ) originates
from HP-IB. On an HP-IB interface, a device can
request service from the controller by asserting a
line on the interface bus. On GPIO, the EIR line is
assumed to be the service request line.

ireadstb Chapter 10 says that ireadstb is for device
sessions only. Since GPIO has no device sessions,
ireadstb is allowed with GPIO interface
sessions. The interface status byte has bit 6 set if
EIR is asserted; otherwise, the status byte is 0
(zero). This allows normal SRQ programming
techniques in GPIO SRQ handlers.

Chapter 5 95

Using HP SICL with GPIO
Communicating with GPIO Interfaces

GPIO Interface Session Example

/* gpiomeas.c
This program does the following:
- Creates GPIO session with timeout and error checking
- Signals the device with a CTL0 pulse
- Reads the device’s response using formatted I/O

*/

#include <sicl.h>

main()
{

INST id; /* interface session id */
float result; /* data from device */

/* log message and exit program on error */
ionerror (I_ERROR_EXIT);

/* open GPIO interface session, with 10-second timeout
*/

id = iopen ("gpio");
itimeout (id, 10000);

/* setup formatted I/O configuration */
igpiosetwidth (id, 8);
igpioctrl (id, I_GPIO_READ_EOI, ’\n’);

/* monitor the device’s PSTS line */
igpioctrl(id, I_GPIO_CHK_PSTS, 1);

/* signal the device to take a measurement */
itrigger(id);

/* get the data */
iscanf(id, "%f%*t", &result);
printf("Result = %f\n", result);

/* close session */
iclose (id);

}

96 Chapter 5

Using HP SICL with GPIO
Communicating with GPIO Interfaces

GPIO Interrupts Example

/* gpiointr.c
This program does the following:
- Creates a GPIO session with error checking
- Installs interrupt handler & enables EIR interrupts
- Waits for EIR; invokes the handler for each interrupt
- Handler checks interrupt cause & exits when EIR is

 clear
*/
#include <sicl.h>

void handler(id, reason, sec
INST id;
long reason, sec;
{

if (reason == I_INTR_GPIO_EIR) {
printf("EIR interrupt detected\n");

/* Proper protocol is for the peripheral device to hold
 * EIR asserted until the controller "acknowledges" the
 * interrupt. The method for acknowledging and/or responding
 * to EIR is very device-dependent. Perhaps a CTLx line is
 * pulsed, or data is read, etc. The response should be
 * executed at this point in the program.
 */

}
else

printf("Unexpected Interrupt; reason=%d\n", reason);
}

main()
{

INST intf; /* interface session id */

/* log message and exit program on error */
ionerror (I_ERROR_EXIT);

/* open GPIO interface session */
intf = iopen ("gpio");

Chapter 5 97

Using HP SICL with GPIO
Communicating with GPIO Interfaces

/* suspend interrupts until configured */
iintroff();

/* configure interrupts */
ionintr(intf, handler);
isetintr(intf, I_INTR_GPIO_EIR, 1);

/* wait for interrupts */
printf("Ready for interrupts\n");
while (1) {

iwaithdlr(0);
}

/* iwaithdlr performs an automatic iintron(). If your program
 * does concurrent processing, instead of waiting, then you need
 * to execute iintron() when you are ready for interrupts.
 */
/* This simplified example loops forever. Most real applications
 * would have termination conditions that cause the loop to exit.
 */
iclose (intf);

}

98 Chapter 5

Using HP SICL with GPIO
Summary of GPIO Specific Functions

Summary of GPIO Specific Functions

Note Using these GPIO interface specific functions means that the program can
not be used on other interfaces and, therefore, becomes less portable.

Function Name Action

igpioctrl Sets the following characteristics of the GPIO
interface:

Request Characteristic Settings

I_GPIO_AUTO_HDSK

I_GPIO_AUX

I_GPIO_CHK_PSTS

I_GPIO_CTRL

I_GPIO_DATA

I_GPIO_PCTL_DELAY

I_GPIO_POLARITY

I_GPIO_READ_CLK

I_GPIO_READ_EOI

I_GPIO_SET_PCTL

Auto-Handshake mode

Auxiliary Control lines

Check PSTS before read/write

Control lines

Data Output lines

PCTL delay time

Logical polarity

Data input latching

END termination pattern

Start PCTL handshake

1 or 0

16-bit mask

1 or 0

I_GPIO_CTRL_CTL0

I_GPIO_CTRL_CTL1

8-bit or 16-bit mask

0-7

0-31

See Chapter 10

I_GPIO_EOI_NONE or

8-bit or 16-bit mask

1

igpiogetwidth Returns the current width (in bits) of the GPIO data
ports.

igpiosetwidth Sets the width (in bits) of the GPIO data ports.
Either 8 or 16.

Chapter 5 99

Using HP SICL with GPIO
Summary of GPIO Specific Functions

Function Name Action

igpiostat Gets the following information about the GPIO
interface:

Request Characteristic Value

I_GPIO_CTRL

I_GPIO_DATA

I_GPIO_INFO

I_GPIO_READ_EOI

I_GPIO_STAT

Control Lines

Data In lines

GPIO information

END termination pattern

Status lines

I_GPIO_CTRL_CTL0

I_GPIO_CTRL_CTL1

16-bit mask

I_GPIO_AUTO_HDSK
I_GPIO_CHK_PSTS
I_GPIO_EIR
I_GPIO_ENH_MODE
I_GPIO_PSTS
I_GPIO_READY

I_GPIO_EOI_NONE
or 8-bit or 16-bit mask

I_GPIO_STAT_STI0
I_GPIO_STAT_STI1

